News aus den Instituten

GEO-FaserMap - geplanter Projektablauf. Bildquelle: KUZ

Das neue Forschungsprojekt „GEO-FaserMap“ am Kunststoff-Zentrum in Leipzig (KUZ) untersucht die Geometrieabhängigkeit der Faserorientierung an Bindenähten bei verstärkten Formteilen.

Leichtigkeit und Stabilität – beide Eigenschaften in einem Produkt zu vereinen ist die Königsdisziplin im Leichtbau. Sie erfordert sorgfältige Materialauswahl, optimierte Konstruktionen und fortschrittliche Fertigungstechnologien. Um Kunststoffe für Leichtbauanwendungen zu optimieren, kommen unter anderem kurze Glasfasern zum Einsatz. Kurzfaserverstärkte Kunststoffe zeichnen sich durch erhöhte Festigkeit, Steifigkeit und Dimensionsstabilität aus. Diese vorteilhaften Eigenschaften spiegeln sich in der industriellen Nutzung der Werkstoffe wieder: es gibt einen stetigen Zuwachs an strukturellen Bauteilen aus kurzfaserverstärkten Kunststoffen.

Wie genau sind bisherige Simulationsmethoden?

Der Projektverantwortliche Steffen Jacob, Entwicklungsingenieur am KUZ, fasst die Motivation zu GEO-FaserMap wie folgt zusammen: „Bisher werden die bei der integrativen Simulation eingesetzten Materialkennwerte fast ausschließlich aus Versuchen mit normierten Prüfkörpern gewonnen, mechanisch herausgelöst aus spritzgegossenen Platten. Leider existieren keine Untersuchungen, die den Zusammenhang zwischen der Geometrie eines Fließhindernisses, der sich lokal ausbildenden Faserorientierung und der an dieser Stelle vorliegenden Bindenahtfestigkeit klären. Unterschiedliche Faserorientierungen in Abhängigkeit der umflossenen Geometrie bedeuten unterschiedliche Festigkeiten.“

Um die Entwicklungskosten für spritzgegossene Bauteile möglichst gering zu halten, werden aussagekräftige Vorhersagemethoden bezüglich der Bauteilfestigkeit benötigt. Kenntnisse zur geometrieabhängigen Faserorientierung an Bindenähten können eine höhere Vorhersagequalität bezüglich vorhandener Festigkeiten ergeben. Über integrative Simulationsmethoden ist es heutzutage möglich, Bindenahtpositionen aus einer Füllsimulation in die Struktursimulation zu übertragen und dort die anisotropen (richtungsabhängigen) Werkstoffbeanspruchungen abzubilden.

Schnellere und kostengünstigere Prototypen durch 3D-Prüfkörper

Im Projekt soll der Nachweis der Geometrieabhängigkeit mit der Untersuchung an eigens entwickelten 3D-Prüfkörpern mit provozierter Bindenaht erbracht werden. Hierzu werden an den Prüfkörpern die entsprechenden Materialkennwerte für ein Materialmapping ermittelt, welches die Grundlage für ein präziseres Belastungsmodell in der Struktursimulation bildet.

Ziel des Forschungsprojekts ist es, das Leichtbaupotenzial von kurzfaserverstärkten Kunststoffen optimal im Bauteildesign auszunutzen. Die Ergebnisse sollen den EntwicklerInnen von spritzgegossenen Formteilen helfen, diese beanspruchungsgerechter auszulegen. Die genauere Vorhersage der Bauteilfestigkeit im Anwendungsfall soll eine nachhaltige Formteilauslegung für einen langen Produktlebenszyklus ermöglichen. Die Anzahl der Iterationen bei der Formteilentwicklung bis zum fertigen Prototypen könnte somit deutlich reduziert werden.

Pressemitteilung des KUZ vom 22.06.2023.