Für gut verträgliche Implantate in der Medizin entwickeln Forschende an der TU Braunschweig und am DECHEMA-Forschungsinstitut eine Titanlegierung, die ohne Aluminium und Vanadium auskommt.

Titan ist aus der modernen Medizintechnik nicht mehr wegzudenken. Bereits seit etwa 30 Jahren verwenden Ärzte Titanwerkstoffe für den Ersatz bzw. das Verbinden von Knochen. Vorteil des Titans: Es ist sehr stabil und passt sich dennoch sehr gut an die Knochen an. Die Techniker sprechen von hoher Festigkeit kombiniert mit vergleichsweise geringer Steifigkeit.

Beide Eigenschaften minimieren die Gefahr, dass sich das Implantat im Körper lockern oder gar brechen könnte. Weitere Pluspunkte: Titanlegierungen sind für den Körper im Allgemeinen gut verträglich und sehr korrosionsbeständig. Diese Eigenschaften verdanken sie einer dünnen natürlichen Oxidschicht auf ihrer Oberfläche.

Dennoch verschleißen selbst Titanlegierungen, wodurch Abriebpartikel am Implantat gebildet werden können. Die derzeit am häufigsten in der Medizintechnik eingesetzten Titanlegierungen enthalten neben Titan auch die Elemente Aluminium und Vanadium bzw. Niob. Nimmt die Oxidschicht dieser Legierungen Schaden, können Metallionen in den Blutkreislauf gelangen. Das ist deshalb problematisch, weil Aluminium und Vanadium den Körper durch ihr zelltoxisches Verhalten schädigen können.

In ihrem auf zweieinhalb Jahre angelegten Forschungsvorhaben, das seit Anfang 2018 läuft, arbeiten die Wissenschaftler der TU Braunschweig und des DECHEMA-Forschungsinstituts deshalb an einer Aluminium- und Vanadium-freien Titanlegierung. Diese enthält neben Titan ausschließlich Legierungsbestandteile, die bereits im menschlichen Körper vorkommen oder für die keine negativen Auswirkungen bekannt sind.

Neben der dadurch verbesserten Bioverträglichkeit soll die neu entwickelte Legierung die mechanischen Eigenschaften des derzeit verwendeten Standardmaterials aus Titan, Aluminium und Vanadium zumindest erreichen oder sogar übertreffen.

Dabei konzentrieren sich die Forscher noch nicht auf ein bestimmtes Körperteil für die neue Legierung: Von der Knochenplatte bis zum Hüft- oder Zahnimplantat, alle Einsatzmöglichkeiten sind denkbar.

An der TU Braunschweig suchen die Wissenschaftler in Simulationen derzeit nach dem geeigneten Mix und passender Produktionsmethode für Legierungen des neuen Stoffes. Die Legierungen erzeugen sie anschließend im Labormaßstab und bewerten deren Eigenschaften. Am DECHEMA-Forschungsinstitut führt man dazu umfangreiche Untersuchungen zum Korrosionsverhalten der Legierungen durch. Auf diese Weise erhalten die Forschenden Informationen darüber, inwieweit Metallionen in das Gewebe um das Implantat eindringen können.

Die metallische Implantatoberfläche wird durch den Prozess der plasma-elektrolytischen Oxidation in eine keramische Schicht gewandelt. Analog dem Anodisieren wird dabei eine elektrische Spannung an das als Pluspol geschaltete Implantat angelegt. Durch das Überschreiten der sog. Durchbruchfeldstärke kommt es zur Ausbildung von Lichtbögen. Dabei läuft eine Plasmareaktion im Entladungskanal der ausgebildeten Oxidschicht ab, was zu einem lokalen Aufschmelzen des Materials sowie dem Einbau ionischer Bestandeile aus der wässrigen Lösung ins Innere des Materials führt. Die hierbei herrschenden Energiedichten sind vergleichbar mit denen einer Blitzentladung während eines Gewitters. Bei der raschen Erstarrung bildet sich eine verdickte Oxidschicht aus, die das Implantat effektiv vor Korrosion und Verschleiß schützt.

Weblinks mit weiterführenden Informationen:

https://dechema.de/Forschung/AiF/Forschungsprojekte/Laufende+Projekte/19708+N.html

https://www.tu-braunschweig.de/ifw/forschung/neuewerkstoffe/cptitan4plus